M.N. DASTUR & CO (P) LTD

ALTERNATE IRON AND STEEL TECHNOLOGIES LIKELY TRENDS AND SUTAINIBILITY ASPECTS

* The authors are with M. N. Dastur & Company (P) Ltd, *Consulting Engineers*, Kolkata.

Paper presented at the International Conference 'Indian Metals Industry – Shaping the Next Decade' organised by The Indian Institute of Metals – Delhi Chapter, 12-13 February 2011, New Delhi.

PRESENTATION INCLUDES

- PRESENT STATUS OF INDIAN STEEL INDUSTRY
- CONVENTIONAL IRONMAKING
- ALTERNATIVE ROUTES OF IRONMAKING
- STEELMAKING
- ENVIRONMENT AND SUSTAINABILITY
- CONCLUDING REMARKS

PRESENT STATUS OF INDIAN STEEL INDUSTRY

- ➢ Fifth largest steel producing nation
- > Around 65 million tons crude steel production in 2010
- > Accounts for around 5% of world's total steel production
- World Steel Association estimates that India's steel demand is likely to grow almost by 14 percent annually till 2011.

Prime focus of steel policy

- To attain levels of global competitiveness in terms of global benchmark of efficiency and productivity.

CONVENTIONAL IRONMAKING

- The performance level of blast furnace has enhanced remarkably during the last 2 decades leading to higher cost efficiency.
- Presently, a single large size furnace produces more than 10000 tons of hot metal per day (tpd).

Notable features of the efficient BF in good International scenarios are:

Productivity, t/day/cu m (UV/IV*)	 >2.5
Coke rate, kg/ton of hot metal (thm)	 <300
Coal rate, kg/ton of hot metal (thm)	 ~200
Silicon content, %	 0.3
Sulphur content, %	 0.020
Utilisation, %	 >98%
Campaign life, years	 >15

* UV/IV – Useful volume/Inner volume

- The performance level of Indian blast furnaces compared to global benchmark is low due to:
 - Lower size of blast furnace
 - Inferior quality of raw materials and coke
 - low level of top pressure
 - Lower hot blast temperature
 - Lower coal injection rate with inadequate oxygen enrichment of blast.

- Measures to improve performance level of Indian blast furnace
 - Installation of large size modern blast furnaces
 - Upgradation of several existing blast furnaces
 - Improvement in raw material quality
 - Use of high proportion of good quality imported coking coal for coke making.
 - Installation of bell less top charging system
 - Improvement in cooling system
 - Effective monitoring and control system

ALTERNATIVE ROUTES OF IRONMAKING

Major objectives of the Alternative Ironmaking processes are:

- To provide an alternative to traditional BF ironmaking
- To do away with the requirement of metallurgical coke as prime reductant and heat source.

There are two types of alternative processes available:

- Direct reduction (DR) processes
 - Coal based
 - Gas based
- Smelting reduction (SR) processes

DIRECT REDUCTION PROCESSES

- Commercial coal based DR processes adopt either rotary kilns or rotary hearth reactors; capacity limited.
- ITmk3 plant (Cap. 500,000 tpy iron nuggets) based on rotary hearth process has been commissioned at Minnesota, USA in 2010.
- Commercial gas based DR processes adopt a single vertical reactor; have higher thermal efficiency & greater benefit of economies of scale compared to coal based DR processes.

SMELTING REDUCTION

- SR is the process which carry out reduction of iron oxides, followed by melting where refining takes place in the liquid phase.
- SR process is to provide an alternative to the traditional BF route of ironmaking, and do away with the use of metallurgical coke.

STEELMAKING

PRESENT STATUS

PROCESS-WISE CRUDE STEEL PRODUCTION IN INDIA

PRESENT AND LIKELY FUTURE

Likely future

AREAS OF IMPROVEMENT BOF

AREAS OF IMPROVEMENT (Cont'd)

BOF

AREAS OF IMPROVEMENT (Cont'd)

BOF

DASTURCO

AREAS OF IMPROVEMENT EAF

Online gas temperature and composition analysis

AREAS OF IMPROVEMENT (Cont'd) EAF

AREAS OF IMPROVEMENT SECONDARY REFINING

≁

Production of steel with low residual element

- Better metallurgical properties like better crack propagation resistance, better tensile strength

AREAS OF IMPROVEMENT CONTINUOUS CASTING

AREAS OF IMPROVEMENT (Cont'd) CONTINUOUS CASTING

DEVELOPMENT OF ADVANCED STEELS

Steels for automobile industry

Basic property requirements:

- High strength
- High formability
- High strength to weight ratio

TRIP (Transformation induced plasticity) steel, IF (Interstitial free steel), Dual phase steel, Advanced high strength steels (AHSS) fall in this category.

In India , bulk production of TRIP steel is yet to take off.

DEVELOPMENT OF ADVANCED STEELS (Cont'd)

- ✓ Steel for oil and gas transportation Steels having
 - Higher corrosion strength
 - Better crack propagation toughness at low temperature
 - Better corrosion resistance are being produced
- ✓ Steel for boiler and supercritical application Steels having
 - Higher temperature resistance
 - Higher strength
 - Higher oxidation resistance are being produced.
- ✓ Transformer steels
 - Steels having lower core loss (Cold Rolled Grain Oriented) are being produced.

ENVIRONMENT AND SUSTAINABILITY

Sustainability is optimal use of natural resources and adoption eco-friendly processes to minimise environmental impact.

This can be attained in three ways:

- Reduction in use of resources in steelmaking itself through development of new production and processing methods.
- Development of new generation of steel with improved properties to meet the stringent requirement of the customer with reduced consumption.
- Environment friendly operation

SPECIFIC ENERGY CONSUMPTION – INDIA VS OTHER COUNTRIES (2008/2009 FIGURES)

Considerable potential to reduce energy intensity in India.

CO₂ EMISSION BY STEEL INDUSTRY– INDIA VS OTHER COUNTRIES (2008/2009 FIGURES)

CONCLUDING REMARKS

- Indian steel industry on a robust growth path
 - Maintained a upward swing in spite of the global recessionary trends.
 - By recent estimates, country's steel production could rise almost three fold by end of this decade.
- The increase in capacity needs to address environmental issues for long term sustainability.

THANK YOU

